
Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications

Aidan Polese∗, Safwat Hassan†, Yuan Tian∗
*School of Computing, Queen’s University, Canada

{aidan.polese,y.tian}@queensu.ca
†Thompson Rivers University, Canada

shassan@tru.ca

ABSTRACT
Third-party libraries are frequently adopted in open-source Android
applications (apps). These libraries are essential to the Android app
development ecosystem as they often provide vital functionality
that would take significant development time to implement other-
wise. Researchers have mainly studied the prevalence and updates
of third-party libraries in Android apps. However, no prior work in-
vestigates the adoption percentages of third-party libraries in apps
and how they evolve. It remains unknown whether there are any
patterns in third-party libraries’ adoption percentages in Android
apps.

In this study, we empirically investigate the adoption of third-
party libraries in 2,997 open-source Android apps over a six-year
study period (2015-2020). We collected 39,882 commits from repos-
itories hosting the target apps, and identified all changes to the
adoption percentages of third-party libraries in each app. We then
calculated the adoption percentage of each library in each app over
specific time periods. Using the collected data, we report adop-
tion statistics of popular libraries, propose a new taxonomy to
characterize their evolutionary patterns, investigate the adoption
percentages of third-party libraries across different app categories,
and explore the groups of libraries that have similar release patterns
and version-level adoption patterns. Our findings provide insight
on third-party library adoption in open-source Android apps and
thus might help researchers create tools to improve the library
adoption in mobile apps.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories.

KEYWORDS
Android application, Third-party libraries, Mobile applications,
Open-source, Adoption percentage, Empirical study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9301-0/22/05. . . $15.00
https://doi.org/10.1145/3524613.3527810

ACM Reference Format:
Aidan Polese∗, Safwat Hassan†, Yuan Tian∗. 2022. Adoption of Third-party
Libraries in Mobile Apps: A Case Study on Open-source Android Applica-
tions. In IEEE/ACM 9th International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft ’22), May 17–24, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3524613.3527810

1 INTRODUCTION
Dependencies often make up large parts of the foundation for mod-
ern apps. Similarly, in the Android app ecosystem, third-party li-
braries are used in almost every popular open-source Android app
project. They are also used in less popular apps. Libraries are es-
sential to the ecosystem as they often provide key functionality
or implement features that would take a lot of extra development
time to implement otherwise. For instance, libraries can be used
to internally organize GUI elements with view binding, load, and
display ads to generate revenue for developers and allow an app to
connect to social media platforms and integrate social functionality.
When developing an Android app, utilizing external libraries can
help alleviate development effort by using shared code and creating
more fully featured and robust apps.

This study focuses on libraries and library version usage from
2015 through 2020 within open-source Android apps. We have
defined third-party libraries as libraries that do not begin with an-
droidx, com.android, org.jetbrains.kotlin, and android.arch, because
direct SDK libraries are not indicative of the current library land-
scape - they represent developer choice from different native An-
droid modules. We have also excluded Kotlin libraries because they
represent which language a developer prefers to write in and are
not necessarily directly linked to their library choices. Specifically,
we collect and analyze the libraries and their associated versions
used in open-source apps by examining the usage percentages of
libraries, usage percentages of associated versions, commenting on
release statistics, and trends present in the Android library space.

Few researchers or organizations have approached this topic
before. There are sites like AppBrain[24] which provide library
market share information. However, AppBrain and other similar
sites only consider statistics from the current year or what they
subjectively deem “useful” which is usually not fully qualified. To
fill the gap, this paper hopes to create a fully formed compilation of
data to examine the state of open-source Android development as
of current. Analyzing the adoption of libraries and library versions
in apps would help developers understand which library versions
are the most stable to prevent build breaking, avoid bugs, run-
time errors, ease development effort. It may also help developers
explore the potential useful popular libraries widely adopted by

https://doi.org/10.1145/3524613.3527810
https://doi.org/10.1145/3524613.3527810

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Aidan Polese∗ , Safwat Hassan† , Yuan Tian∗

other apps. For SE researchers, studying the market-wise adoption
of libraries in Android apps may exhibit the state of the Android
library landscape and the direction it is heading in, be it a dip,
transition period, or something similar.

Themain goal of this work is to analyze the adoption percentages
of third-party libraries in Android apps and explore how popular
libraries’ adoption percentages evolve over time. As we would like
to mine the entire history of library adoption in apps, we decided
to focus on open-source android apps. Specifically, we collected
a set of 2,278 open-source Android apps from three resources, i.e,
F-droid [4], Android Time Machine [10], and AndroidTest [17]. We
cloned the repositories of these projects and mined 39,882 changes
on the adoption of third-party libraries. Based on the collected data,
we identify different patterns of third-party library adoption and
evolution by addressing the following three research questions:

RQ1: What are the highest adopted libraries? Given the fact
that thousands of third-party libraries are adopted in open-source
apps, it is necessary to identify which libraries have the highest
adoption percentages, as they represent the most important func-
tionality types that Android developers are interested in. We report
the the maximum adoption percentage for each highly adopted
library over all periods that are considered, showing how highly
adopted each library is within in the study period. We also cat-
egorize highly adopted libraries into distinct sets. The adoption
percentages of libraries may be determined by the respective func-
tionality of each mobile app. We found that different classifications
do indeed have varying levels of library category usage. For in-
stance, Games apps in our target set utilize ad libraries heavily to
generate revenue as they are largely free.

RQ2: How do the adoption percentages of popular libraries
evolve? Intuitively, like normal software products, the adoption of
third-party libraries in Android apps might not remain stable. Thus,
this question aims to summarize evolutionary patterns in popu-
lar libraries’ adoption percentages identified in RQ1. We grouped
libraries that have similar adoption percentage change patterns
and found that there are five main adoption patterns: libraries that
experience an increase in overall adoption percentage, those which
have overall decaying adoption percentage, libraries which have
oscillating levels of adoption percentages, libraries that maintain
consistent usage which do not increase or decrease, as well as li-
braries that experience growth in their adoption percentage, and
then decay.

RQ3: What are the relationships between library version re-
leases and the adoption percentages of libraries and their
associated version patterns? In this RQ, we examine the specific
library versions being adopted in selected apps. We explore the rela-
tionships between version-level adoption and the release patterns of
libraries. The rationale behind this question is that rapid-releasing
libraries might have clients (apps that use the library) scatted across
different versions and thus affects the version-level adoption per-
centage and evolution patterns. Knowing such information can help
both app developers and library providers to better select third-
party library versions. We found that using K-Means clustering,
having three clusters best represented the library version usage
relationships, giving three distinct patterns.

As far as we know, this is the first study providing adoption
percentages of third-party libraries using a large amount of Android
apps over a long study period. Our findings provide insight for
stakeholders in the Android ecosystem, and may help researchers
create tools that can improve the adoption of third-party libraries
in mobile apps. Our dataset contains updated fully processed 2,278
open-source apps with all changes on library adoption. We make
available the data we used in this research at [3]. This could be used
to verify our results as well as for follow-up research.

2 BACKGROUND
How are Android apps built using external libraries? The
most common building mechanism for Android apps is Gradle [28].
When using Gradle to build an Android project, a file called the
build.gradle is used to define Gradle tasks, build configurations,
project plugins, and declare library dependencies 1. The section
labelled dependencies is where library dependencies and their as-
sociated versions are declared. These keywords are then followed
by the dependency name and version number. The keywords that
will be focused on in this study are implementation, api and compile
as these keywords focus on app functionality rather than testing
and build dependencies [1]. When the app build process starts, the
dependencies are pulled from their maven repositories and then
the app is built [Fig. 1].

Figure 1: Gradle Building Process

How can the adoption percentages of libraries be mined? The
Gradle wrapper file (gradlew) contains the exact Gradle configura-
tion that the developers define and use when they develop and build
their app. The gradlew file can be used in place of having a matching
local Gradle environment to the developers of the app. The reason
for this is because when first executing Gradle commands using
gradlew [2], the necessary version of Gradle is downloaded and
then used to execute commands in place of a personal installation.
The reason that using a gradlew file is important is because extract-
ing app library dependencies is not possible unless one is using the
correct Gradle version defined by the developers.

Using gradlew to execute Gradle commands is the same as using
a standard Gradle installation to execute Gradle commands. To view
the dependencies that are used in an app, one can use gradlew to
create a dependency tree for the app. Figure 2 shows an example of
a dependency tree [5]. This tree shows all declared dependencies,
their sub-dependencies as well as all associated versions. To extract
this tree, one can use and run the Gradle dependencies command
by using the gradlew file that is included in most Android app

1https://docs.gradle.org/current/userguide/tutorial_using_tasks.html

https://docs.gradle.org/current/userguide/tutorial_using_tasks.html

Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

projects. Here is a sample dependencies command ./gradlew -q
dependencies –configuration implementation. The dependencies are
pulled from their respective maven repositories and then their
respective dependency versions are resolved. These dependencies
are then used in generating the dependency tree. This is the basis
which this study is built upon.

Figure 2: Partial Gradle Dependency Tree Output

3 DATA COLLECTION
Figure 3 shows the overview of our data collection approach. The
following sections describe the details of our data collection process.

Figure 3: An Overview of Our Data Collection Process

3.1 Collecting open-source Android apps
As a baseline, we consider three data resources where we collected a
list of open-source Android apps that are widely studied in the anal-
ysis of mobile apps. In particular, the three resources are F-Droid [4],
a well-known site for hosting free and open-source Android apps,
AndroidTimeMachine [10] a collection of open-source Android
apps collected by Geiger et al., and AndroidTest [17] a collection of
Android apps from GitHub, provided by Lin et al.

Apps on F-Droid are indexed using the app’s associated package
name. F-Droid pages also contain links to the apps’ repositories.
AndroidTimeMachine is a highly-cited Android app dataset (used
in [9]). It was created by Geiger et al. to analyze the relationship
between app source code and metadata. For each of the app in
AndroidTimeMachine, information, such as Android app package
names, repository links and metadata such as Google Play category,
are provided. The third dataset, AndroidTest, was created in 2020
by Lin et al. [17] to understand the test automation culture among

mobile app developers. For each app in this dataset, information,
such as the app package name, number of commits made to the
repo and the number of contributors are provided.

At the time of data collection in October 2021, there were 2,954
open-source Android apps (with repository URLs included) col-
lected from F-Droid and 8,431 from AndroidTimeMachine, 12,562
from AndroidTest, forming a total of 21,809 unique candidate An-
droid apps (package names and associated repository URLs) for us
to explore.

3.2 Identifying apps with third-party libraries
Among the 21,809 apps collected in step 1, we use git to successfully
clone 20,096 (92.14%) repositories. We filter out the remaining non-
git supported repositories to make the following commit parsing
process consistent. Next, we perform the following steps to identify
eligible apps that can be analyzed in our study:

• Removing repositories that do not contain information
about the adopted libraries. As described in Section 2, the
build.gradle and the gradlew files can be used to extract
the used libraries (along with their library versions) in a
repository. In this work, we focus on analyzing how third-
party libraries are adopted on a large scale. Hence, we remove
repositories that do not contain the build.gradle and the
gradlew files.

• Removing apps that do not define any depending li-
braries. As introduced in Section 2, adopted libraries are
defined using three keywords implementation, compile, and
api. Thus, we only keep app repositories that declare at least
one of the three keywords used to declare third-party li-
braries.

• Resolving repositories with multiple app packages. An
Android app is identified by a unique package identifier, usu-
ally in the form of com.example.app. Sometimes one reposi-
tory can host multiple packages, e.g., one main package and
another as a lite version. For those repositories, we manually
select the main package name by checking the information
related to the app’s respective naming convention.

Table 1 summarizes the number of apps achieved after following
each of the above steps. At the end of step 2, we collected a set
of 2,997 projects that have specified at least one library using a
specified keyword in their latest app version. We noticed that many
candidate apps are filtered in step 2. However, we believe that this
would provide us with a clean data set for us and future researchers
to conduct research on library adoption and usage. More discussion
on threats to validity introduced in the above process are presented
in Section 5.

3.3 Collecting third-party library adoption
history

For each of the selected 2,997 apps from step 2, we collect all com-
mits which modify any of an app’s build.gradle files. For each identi-
fied commit, we check out the repository at the specific commit and
identify the corresponding Gradle wrapper file. We then run the
Gradle wrapper file to generate the corresponding dependency tree.
Next, we utilize a simple custom parser to parse the dependency

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Aidan Polese∗ , Safwat Hassan† , Yuan Tian∗

Table 1: Statistics of Apps Collected In Step 1 and Step 2
Step 1: Collecting open-source Android apps Step 2: Identifying apps with third-party libraries

Data source Number of Package Names Number of URLs Number of Package Names Number of URLs
AndroidTimeMachine 8,424 8,216 418 314
AndroidTest 12,562 12,562 2,414 2,414
F-Droid 3,046 2,946 813 797
Total 21,809 23,278 3,024 2,997

tree and collect the set of third-party libraries adopted in each com-
mitted version of the app. It should be noted that the number of
apps was further reduced to 2,278 as 716 apps contain commit(s)
that could not be built. At the end of this step, we successfully
compiled a list of 39,882 builds of 2,278 apps and we identified 3,211
unique libraries. Table 2 shows the distribution of apps by the year
they were created in.

Table 2: Distribution of Apps by Year Created
Year Created # Apps
2008-2014 175
2015 570
2016 382
2017 191
2018 534
2019 359
2020 54
2021 13

3.4 Data Statistics and Time Periods
Android apps, like other software, may become inactive after they
mature. Considering the libraries adopted in those inactive app
might bias our study towards older apps and thus do not reflect
the common adoption practices given a specific period. Therefore,
to answer RQ1-3, we only consider active apps as a target when
analyzing the adoption of third-party libraries. In particular, at point
in time 𝑡 , active apps (𝑡) are apps with at least a single commit to
their repositories within the past 12 months of the specified time 𝑡 .

Fig. 4 shows the distribution of active apps, cumulative active
apps, and the average active apps over six years (from 2015-01-01
to 2021-01-01). On average, we have around 1,000 active apps per
year. We have collected the commits made to the selected apps until
October 2021 (when we start data collection). However, to answer
three RQs, we decided not to consider the commits made in 2021 as
we noticed that the year 2021 (2021-01-01 to 2021-10-31) has fewer
active apps than previous years.

Figure 4: Active Apps from 2015 to 2021

4 EMPIRICAL STUDY AND RESULTS
In this section, we present our study in terms of three research
questions. For each RQ, we discuss the motivation, approach and
the obtained results.

4.1 RQ1: What are the highest adopted libraries?
Motivation: The main goal of this study is to take an empirical
look at the historical Android app landscape and identify libraries
that are popular among developers within the specified time frame
of 2015 through 2020. Answering RQ1 would help us find important
libraries in different periods and explore the possible reasons for
being popular. For instance, a library might have a high adoption
percentage for its novelty and broad functionalities.

Apps have different categories (e.g., games, education, and pro-
ductivity). The adoption of third-party libraries can vary from one
app category to another. Thus we also investigate if there are any
differences in the adoption percentages of libraries across
different app categories. Understanding the most dominantly
adopted libraries in each app category can help app developers bet-
ter prioritize their effort to adopt and maintain third-party libraries.

Approach: To study how widely a library 𝐿 is used at a certain
time 𝑡 , we measured the Adoption Percentage (𝐴𝑃 (𝐿,𝑡)) as the ratio
of the number of active apps(𝑡) that adopt the library 𝐿 to the total
number of active apps(𝑡). For instance, at specified time 𝑡 , if there
are 100 active apps and 20 of them are using a library 𝐿, the𝐴𝑃 (𝐿,𝑡)
is 20%.

We introduce MAP (Maximum Adoption Percentage) as the high-
est value of the adoption percentage of a third-party library over
the study period. Specifically,𝑀𝐴𝑃 (𝐿) is defined as:

𝑀𝐴𝑃 (𝐿) =𝑚𝑎𝑥 (𝐴𝑃 (𝐿,𝑡1) , 𝐴𝑃 (𝐿,𝑡2) , . . .𝐴𝑃 (𝐿,𝑡𝑛))

Where 𝐴𝑃 (𝐿, 𝑡𝑘) refers to the adoption percentage of library 𝐿 in
time period 𝑘 . 𝑛 refers to the total number of time periods, i.e., 12
(6 years * 2) in this study.

We use MAP to exclude the novice third-party libraries so that
we can analyze libraries that have been widely adopted in our
collected apps. For example, a third-party library with a MAP of
10% means that, at a specified time, 10% of the studied active apps
have adopted this library.

Calculate the adoption percentage of each library: From January 1st

of 2015 up to December 31st of 2020, we measured the adoption
percentage of every library used in all active apps every six months
(i.e., we consider time 𝑡 as a span of 6-months snapshots). Finally,
we identify a list of the top 10 most popular libraries (i.e., libraries
with the highest adoption percentage) every six months. At the
end, we identified the unique third-party libraries that are widely

Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Table 3: Basic Statistics of the Most Popular Third-party Libraries. MAP stands for maximum adoption percentage.
Library Category
(#libs)

Description Library Name MAP Provider

Ads (1) Libraries that are used to load and
display ads

com.google.android.gms:play-services-ads 9.54 Google

Analytics (1)
Allows for monitoring and collecting
user engagement and interaction
statistics.

com.google.android.gms:play-services-analytics 10.39 Google

Connectivity (6)

Libraries that allow for apps to
connect to the internet,
other web services,
interact with http or provide other
wireless capabilities.

com.squareup.okhttp3:okhttp 15.99 Square
com.squareup.okhttp:okhttp 9.57 Square
com.squareup.retrofit2:converter-gson 16.07 Square
com.squareup.retrofit2:retrofit 18.05 Square
com.squareup.retrofit:retrofit 6.85 Square
com.google.firebase:firebase-messaging 10.56 Google

Logging (1) Libraries that allow for the collection
and writing of logging information

com.squareup.okhttp3:logging-interceptor 10.56 Square

Utility (7)

Libraries that allow for connect or use
external api services such as
Google Play or Firebase.
This also includes libraries that offer
backend functionality utilities
which are more focused on
internal workings of app.

com.google.android.gms:play-services 21.23 Google
com.google.android.gms:play-services-base 16.91 Google
com.google.android.gms:play-services-basement 18.98 Google
com.google.android.gms:play-services-tasks 15.45 Google
com.google.firebase:firebase-common 10.09 Google
com.google.firebase:firebase-core 22.01 Google
com.nineoldandroids:library 8.90 Individual

UI (6)

Libraries that are either used
in the creation of front end UI or
have front end UI elements interact
with backend.

com.actionbarsherlock:actionbarsherlock 7.14 Individual
com.google.android.material:material 46.42 Google
com.jakewharton:butterknife 15.48 Individual

com.github.bumptech.glide:glide 16.98 Bump
Technologies

com.github.chrisbanes.photoview:library 7.14 Baseflow
com.squareup.picasso:picasso 15.61 Square

Data Persistence (6)

Libraries that deal with either
backend I/O work or work,
file operations or
interactions regarding storage

com.squareup.okio:okio 15.81 Square
commons-codec:commons-codec 9.52 Apache
commons-io:commons-io 9.52 Apache
org.jsoup:jsoup 7.14 Individual
com.google.code.gson:gson 20.16 Google
javax.inject:javax.inject 17.14 Java

Location (2) Libraries that allow for checking
user location.

com.google.android.gms:play-services-location 8.88 Google
com.google.android.gms:play-services-maps 9.72 Google

adopted (i.e., appear in the top 10 most popular libraries at any
snapshot 𝑡) by the studied apps over the study period.

Identify the type of top libraries: For the identified most popular
libraries, we also identify their function types, e.g., ads library,
logging library, etc.

Analyze category-wise library adoption: To identify the app cate-
gory, we crawled the Google Play Store in Oct 2021. We considered
the category provided in the sources for apps that do not exist in
Google Play Store (either removed or do not publish their app on
the Google Play Store). Then we identified four app categories with
more than 100 apps in our collected data, i.e., Games (100 apps),
Tools (284 apps), Productivity (153 apps), Education (172 apps). A to-
tal of 709 apps are considered for category-wise third-party library
adoption analysis.

Next, for each app in the selected four app categories, we examine
their adoption of libraries on a monthly basis. We then consider
libraries with a MAP larger than 5%. There are a total of 60 libraries
selected. We then manually identify their functional groups. For
each app category, we calculate the percentage of apps in that
category adopted at one selected library in each library category.
For instance, we figured that at 2018-08-01, 7.41% of the active
education apps had adopted at least one ads library. In the end, we
compare the adoption preferences of four app categories.

Results: We identify 32 libraries that are widely adopted.
The identified libraries belong to eight library groups, as
summarized in Table 3. We find that the Google libraries are
the most popular - 40.6% of most popular libraries are provided
by Google. Since Google acquired Android in 2005, naturally, their
proprietary libraries are the most popular. The play-services brand
of libraries are mainly for interacting with the Google Play Store,
and they also provide back-end utility for interfacing with Google
APIs. Google also provides popular Firebase libraries, i.e., firebase-
common,firebase-core, and firebase-messaging. Firebase is a powerful
platform by Google that provides functionalities and helps with the
back-end development of mobile apps (e.g., user authentication).

Followed by Google, Square libraries make up 25% of the top
libraries. It is interesting to find that, Square, a company primar-
ily known for its digital payment systems, developed five out of
six most popular connectivity libraries. Among the connectivity
libraries, com.squareup.retrofit2:retrofit has the highest maximum
adoption percentage (MAP) over all the 12 periods we considered.
This library is very simple and powerful when dealing with HTTP
requests.

Besides the big companies mentioned above, we also notice that
individual developers contribute to 4 out of the 32 most popular
libraries. Three of them were created by a developer named Jake
Wharton. Jake Wharton worked at CashApp and Square [25]. He

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Aidan Polese∗ , Safwat Hassan† , Yuan Tian∗

has made a significant amount of contributions to both his own
android projects as well as all of Square’s and CashApp’s Android-
related repositories. He has over 120 open-source repositories, and
almost all of them are related to Android.

As shown in Table 3, themost popular library is com.google.android.
-material:material with a 46.42% MAP. Material library is extremely
popular because it is a powerful and all-in-one component-based
front-end UI library developed by Google. When developers begin
to create an Android app, they have a high probability of using this
library to design and create GUI elements.

It is also noteworthy that the four most predominant types of
libraries are ones that focus on utilities (21.9% of the 32 libraries), UI,
connectivity, and data persistence. This does make sense as Android
app development is largely centered around creating functional
interfaces and communicating between devices and the internet,
and thus needs UI and connectivity support via third-party libraries.
Utility libraries often interact with Firebase and Google Play, which
are common platforms to utilize when creating apps. There are also
popular utility libraries and data persistence libraries that provide
back-end support, e.g., provide more efficient threading and file I/O
processes which are necessary processes among all apps.

To compare the preference of third-party library adoption across
the four selected app categories, we performed a Scott-Knott ESD
test (V3.0) [23] on the monthly adoption percentage of each app
category on each identified library category. We only consider the
adoption data from 2016 to 2020 as we observed that some app
categories did not have a high adoption percentage of third-party
libraries in 2015. Note that, as we increase the scope of target
libraries to 60 libraries, we identified two additional library groups
upon the eight mentioned in Table 3, i.e., Security libraries and
Compatibility libraries. Security libraries provide security-related
services to secure Android app and provide cryptographic APIs.
Compatibility libraries are used to support apps in their transit
from one SDK version to another.

Table 4 shows the results of tests on all library categories, where
different colors are used to differentiate cluster groups returned
by a Scott-Knott ESD test. We observed that among the four
app categories, Education apps are more likely to adopt third-
party libraries, and Tool apps are less likely to adopt libraries.
For eight out of the ten considered library categories, Education
apps have the highest mean adoption percentage. Tools are inter-
esting in terms of not having a preference in adopting third-party
libraries other than UI libraries. One potential reason is that Tool
apps are mainly focused on creating new functionalities, likely
performing a niche function, so they do not generally use many
common third-party libraries.

All app categories focus on good UI, and thus we observe that
a large portion of them have adopted UI libraries. Besides UI li-
braries, different app categories show various interests over library
categories. Education apps focus on Utility, Data Persistence, and
Connectivity. Often, Education apps need to store a lot of data lo-
cally and receive data from online resources. Thus they prefer to
adopt libraries that can support general functions, data persistence,
and connection. Game apps emphasize ads libraries, as they need
to earn money mainly from advertisements. Connectivity libraries
also play an important role because modern games require a con-
nection to an online server to function. Productivity apps largely

favor UI, Utility, and Data Persistence libraries. The reason behind
this might be that Productivity apps are often the apps like exercise
trackers and study reminders that have highly personalized data,
so keeping track of the user locally and appealing to look at and
use would make an effective app in this category.

Answer to RQ1: 32 libraries spread across 8 functional
categories are identified as the most popular ones by check-
ing the top-10 libraries each in every 6 month time frame
across the six year time period. Google libraries make a
40.6% of the 32 libraries, followed by Square, and individ-
ual contributors. These libraries can achieve a maximum
adoption percentage as high as 46.42% and as low as 6.85%.
Utility and UI libraries are mostly frequently adopted. Ed-
ucation apps are most likely to adopt all kinds of libraries,
and in contrast, Tool apps are less likely to adopt libraries.
Games have the highest emphasis on ads libraries because
ad viewing is the primary way modern mobile games make
money. Productivity apps also focus on data persistence
libraries as they are often focused on personalized single
user tasks.

4.2 RQ2: How do the adoption percentages of
popular libraries evolve?

Motivation: RQ1 analyzes the max adoption percentage for popu-
lar libraries and their adoption in different app categories. In RQ2,
we further investigate the dynamics of adoption percentages and
study how the adoption percentages of popular libraries evolve.
Identifying groups of libraries with similar evolution of adoption
percentages would help us explore potential reasons behind the
evolution patterns.

Approach: We take as input the adoption percentages of the 32
most popular libraries in 12 considered periods (from 2015 to the
end of 2020, every six months) from RQ1. The first two authors
manually examine each of the 32 curves reflecting the evolution of
the adoption percentage of 32 libraries and categorize them into
different evolution trends.

Results: From the collected data, we identify five evolution patterns:
Libraries where their adoption percentage is growing, decaying,
oscillating while decaying, steadily used libraries and libraries that
exhibit a growing then decaying arc. Next, we describe each pattern
as follows.

Pattern 1 - Growing: Growing libraries are libraries which go
from a low adoption percentage to a higher adoption percentage.
Figure 5 shows the sample curves belong to this category. Growing
libraries among the 32 most popular libraries are as follows:

• io.reactivex.rxjava2:rxjava
• io.reactivex.rxjava2:rxandroid
• com.squareup.retrofit2:retrofit
• com.squareup.retrofit2:converter-gson
• com.squareup.okhttp3:okhttp
• com.squareup.okhttp3:logging-interceptor
• com.google.android.material:material
• com.github.bumptech.glide:glide

Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Table 4: Results of SK test across different lib categories. GMAP stands for app group-wise mean adoption percentage. The
darkness of each cell represents the identified group(s). For instance, Education apps adopt significantly more “Analytics”
libraries than other three app categories, followed by Games apps and Productivity apps, and then Tools apps.

Lib Category App Category (GMAP) App Category (GMAP) App Category (GMAP) App Category (GMAP)
Ads Game (9.98) Education (5.26) Productivity (3.17) Tools (2.29)
Analytics Education (14.86) Games (11.74) Productivity (11.14) Tools (3.66)
Connectivity Education (32.41) Games (21.76) Productivity (18.81) Tools (18.01)
Logging Education (16.32) Productivity (12.33) Tools (12.03) Games (9.98)
Utility Education (42.49) Productivity (39.19) Games (22.78) Tools (17.51)
UI Education (37.46) Tools (33.34) Productivity (29.80) Games (17.40)
Data Persistence Education (42.24) Productivity (29.65) Tools (26.85) Games (13.52)
Location Education (17.21) Productivity (5.57) Games (4.63) Tools (3.82)
Compatibility Productivity (5.56) Games (4.33) Tools (2.69) Education (2.24)
Security Education (9.60) Games (6.43) Productivity (5.61) Tools (2.23)

We manually examine the functionalities and release notes of
the above libraries and identify two potential reasons to explain
their growth over the years. First, these libraries are easy to use
and could reduce the code complexity introduced in implementing
relevant services in the mobile app. Secondly, these libraries often
introduce essential features that are not always easy to achieve
using native Android libraries. An example of growing library being
io.reactivex.rxjava2:rxjava. This library enables powerful threading
paradigms to be implemented easily.Without the help of this library,
threading within Android can be quite a hassle.

Figure 5: Growing Libraries

Pattern 2 - Decaying: Decaying libraries are libraries which go
from a high adoption percentage to a lower adoption percentage.
Figure 6 shows the sample curves belong to this category. The
decaying libraries are as follows:

• commons-io:commons-io
• commons-codec:commons-codec
• com.squareup.retrofit:retrofit
• com.squareup.okhttp:okhttp
• com.nineoldandroids:library
• com.google.android.gms:play-services-analytics
• com.google.android.gms:play-services
• com.github.chrisbanes.photoview:library
• com.actionbarsherlock:actionbarsherlock

We manually examine the homepage of each decaying library
and Android SDK release notes. We believe that the main reason
behind the curves is that Android SDK implemented third-party
libraries’ main features, which ends up in the libraries no longer

Figure 6: Decaying Libraries

fulfilling a niche. Hence, those libraries begin to die off because
many developers have started using a new native way to implement
code. A secondary reason is that Android sometimes makes drastic
changes or overhauls to native systems, making libraries no longer
needed or incompatible with the new system. Hence, these libraries
either adapt or die out.

Pattern 3 - Oscillating: Oscillating libraries are libraries that
have periods of a higher adoption percentage and periods of lower
adoption percentages with a fluctuating pattern but eventually die
out. Figure 7 shows the sample curve belong to this category. We
find one oscillating library, i.e.,

• javax.inject:javax.inject

Figure 7: Oscillating Libraries

The above library is only used when there are shifts in technol-
ogy, or a wave of apps are created that use a library. This evolution

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Aidan Polese∗ , Safwat Hassan† , Yuan Tian∗

pattern indicates app development as a whole, e.g., how newly
created apps use a slowly dying technique.

Pattern 4 - Steadily Used: Steadily used libraries are libraries
that have a fairly stable adoption percentage over the whole study
period. Figure 8 shows the sample curves belong to this category.
The steady libraries are as follows:

• com.google.code.gson:gson
• com.google.android.gms:play-services-ads
• com.google.android.gms:play-services-maps
• com.google.android.gms:play-services-location
• org.jsoup:jsoup

Figure 8: Steady Libraries

We observe that the above libraries that are consistently used are
the ones that are not subject to major changes and fulfill a role that
other services cannot fill. For instance, play-service libraries are
steadily used as they serve the main function integral to Android
app availability as a whole. The stable libraries could also be the
ones that are novel and cannot be dethroned or made obsolete by a
change in first party libraries.

Pattern 5 - Growing then Decaying: Libraries that grow and
then decay are classified as libraries that start at a low popularity,
rise to a peak of popularity and then decay down to a lower pop-
ularity. Figure 9 shows the sample curves belong to this category.
The growing then decaying libraries are as follows:

• com.squareup.picasso:picasso
• com.squareup.okio:okio
• com.jakewharton:butterknife
• com.google.firebase:firebase-messaging
• com.google.firebase:firebase-core
• com.google.firebase:firebase-common
• com.google.android.gms:play-services-tasks
• com.google.android.gms:play-services-basement
• com.google.android.gms:play-services-base

We observe that the libraries in this category are often integrated
into Android SDK or are replaced by newer versions. This frequently
happens with play-services libraries as they shift towards Firebase
libraries or are packaged into different play-service libraries. This
happens less frequently with core or common libraries as they are
generally incorporated into Android SDK. Those libraries might be
falling as new technology is introduced, namely, Firebase libraries
soaking up play-services libraries.

Figure 9: Growing then Decaying Libraries

Answer to RQ2: We observed five main evolution pat-
terns of library max adoption percentages: growing, decay,
oscillate, stable, grow and decay. Growing libraries often
implement a feature that is easy to use and significantly
reduces code complexity otherwise. Libraries tend to decay
and die when a new Android SDK implements a similar
feature or dramatically changes the Android architecture
leveraged by the libraries.

4.3 RQ3: What are the relationships between
library version releases and the adoption
percentages of libraries and their associated
version patterns?

Motivation: The purpose of this RQ is to determine if a library’s
release patterns correlate with how developers choose which library
version to use. Release patterns for libraries can change very heavily
from developer to developer and from company to company. The
disparity in release patterns might cause adoption trends to shift
as a whole.

Approach: When libraries release, they generally follow a release
naming scheme of x.y.z where x is the major release version, y
is the minor release version, and z is the patch release version.
Therefore, library releases can be classified as one of three forms,
a major release of form x.0.0, a minor release of form x.y.0, or a
patch release in the form x.y.z. Occasionally, a developer might
have a version similar to x.y.z-alpha where -alpha is an alpha, beta,
rc, etc. version, which will be considered a patch release. As a
visual example, com.google.code.gson:gson has multiple versions
that get adopted at different times with different popularities (i.e.,
percentage of apps that use each library version) [Fig. 10]

Fig. 10 shows that some of the popular gson versions are minor
releases or major releases. There are also a fair few patch releases
adopted but at very low percentages. To quantify such information,
we introduce a metric, namely MVAP (Maximum Version Adoption
Percentage) as the highest value of the adoption percentage of a
third-party library version within apps adopting the library over
the study period. MVAP is defined as:

𝑀𝑉𝐴𝑃 (𝐿𝑖) =𝑚𝑎𝑥 (𝑉𝐴𝑃 (𝐿𝑖 ,𝑡1) ,𝑉𝐴𝑃 (𝐿𝑖 ,𝑡2) , . . .𝑉𝐴𝑃 (𝐿𝑖 ,𝑡𝑘))

Where 𝑉𝐴𝑃 (𝐿𝑖 , 𝑡𝑘) refers to the adoption percentage of version 𝑖

of library 𝐿 in time period 𝑘 within active apps adopting library 𝐿.

Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Figure 10: Version Adoption Percentages of Library
com.google.code.gson:gson.

𝑉𝐴𝑃 (𝐿𝑖 , 𝑡𝑘) is calculated using:
#active apps adopting version i of library L in period k

#active apps adopting library L in period k

MVAP represents the highest relative popularity of a specific ver-
sion among all available versions of a popular library.

Next, we define the following seven metrics to capture the char-
acteristics of a library based on its release patterns and the MVAPs
of their releases:

• We measuremedMajorMVAP as the median value from a
set containing the MVAPs of all major version releases of a
library.

• We measure medMinorMVAP as the median value from a
set containing the MVAPs of all minor version releases of a
library.

• We measuremedPatchMVAP as the median value from a
set containing the MVAPs of all patch releases of a library.

• We measure medReleaseUpTime as the median value in
months, from a set of all the counts of how long a release
existed before a subsequent release.

• We measure ptMajorRelease as the percentage of all re-
leases for a library that are a major release.

• We measure ptMinorRelease as the percentage of all re-
leases for a library that are a minor release.

• We measure ptPatchRelease as the percentage of all re-
leases for a library that are a patch release.

Leveraging the above seven metrics, we perform a K-means
clustering [11] on the most popular 32 libraries in our studied apps
identified in RQ1. The purpose of clustering is to identify libraries
with similar releases and release adoption patterns. We use the
silhouette validation [20] technique to determine the best cluster
number.

Results: By applying silhouette validation, we find that the best
cluster number is 3, with an average silhouette score of 0.5279. We
show the representative statistics (centers) of the three identified
clusters in Table 5.

For cluster 1, there is a pretty even spread of adoption between
major, minor and patch releases, although the edge is given to minor
releases. This behavior might be expected because of how many
minor version releases there are compared to major releases. This
suggests that likely, most feature updates are released in minor

releases. These styles of libraries also tend to have a large amount
of patch releases which seem to release almost every month. This
style of library is well supported and constantly being worked on.

For cluster 2, there is a heavy emphasis onmajor release adoption.
A fair number of releases do tend to be major releases, so this
adoption percentage does make sense. There are also quite a few
patch releases. This style of library looks to be well supported but
developers tend to only set-and-forget the major releases.

Cluster 3 contains a set of libraries with only minor releases
being adopted. The low representative ptMajorRelease value and
the high ptMinorRelease value indicate that those libraries have rare
major releases as major releases could occur only internally, and
only the minor releases with bug fixes are published.

Answer to RQ3: Using a set of 7 metrics, we quantita-
tively cluster three sets of similar libraries based on their
associated version patterns: 1) libraries tend to have pretty
fleshed out adoption percentages which might indicate a
well supported library, 2) libraries with clients that grab
major releases and follow a set-and-forget adoption pat-
tern, 3) libraries where major releases are probably kept
internal as minor releases are by far the most adopted
versions of these libraries.

5 THREATS TO VALIDITY
Threats to internal validity: Concerning factors that can affect
our results. Our method for collecting open-source apps and their
associated third-party library adoption history, may fail to collect
the actual adoption of libraries in a commit of an Android app
repository. However, we manually checked our code and results
on a sample popular app in our dataset and achieve an accuracy of
100% while comparing to human annotation.

We include Google libraries when analyzing the most popu-
lar libraries adopted in active apps during different time periods,
though Google owns Android, because they are not provided by
the Android SDK directly. Like all libraries, they do make changes
based on the changes offered in Android SDK but they have evolved
mostly separate from the official Android SDK and provide optional
functionality, which is why they are worth including. Moreover,
literature studies have analysed Google libraries in Android apps.
For instance, prior study on ad libraries [6] reported that google ads
is the most popular third-party ad library in Google Play Store free-
to-download apps. Excluding Google libraries may lead to slightly
different results for RQ1-RQ3.

Threats to external validity: Concerning the generalization of
our findings. Our analysis is limited to open-source apps as we aim
to parse the commit history of each target android app. Thus, the
results might not be applicable to commercial apps. Tomake sure we
can get an accurate set of adopted libraries for each app in a specific
time period, we filtered out apps that do not contain build.gradle
and the Gradle wrapper file. This design removes a large portion
of our initial set of 21,809 candidate apps, and thus the reported
adoption percentage might not represent the whole open-source
Android app ecosystem. However, we believe that such design is
necessary, as modern and high-quality open-source apps often

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Aidan Polese∗ , Safwat Hassan† , Yuan Tian∗

Table 5: Representative Statistics of Three Identified Clusters of Libraries.

cluster medMajorMVAP medMinorMVAP medPatchMVAP medReleaseUpTime ptMajorRelease ptMinorRelease ptPatchRelease
1 10.69 15.08 8.86 1.21 10.48 40.71 48.81
2 93.92 18.48 18 2.25 30.12 6.57 63.31
3 0 100 35 2.5 1.19 65.18 33.63

follow the standard Gradle build mechanism to define and maintain
library dependencies. Moreover, the resulting dataset contains 2,278
apps, which is comparable with state-of-the-art dataset used for
library analysis that rely on the mining of repository of apps [21].

6 IMPLICATIONS
Developer Adoption Patterns: We speculated that a possible
reason a developer might adopt a library is due to a few factors,
ease of implementation, powerful and ease of use. The libraries
that make it into the top 10 most libraries in a time frame are those
which can be easily implemented into code and are able to function
with as few lines as possible. So, if a developer would want their app
to perform well, they might consider having their library function
with as few lines as possible with one clear intended use outside of
the Android SDK if they wish to be widely adopted. Jake Wharton
is a prime example of this [25]. It might be worth looking into how
versions are adopted as it would help developers to understand
when to implement and release big feature versions that will stick
around.
Insights for Platform Providers: If a company like Square or
google would want to increase their market share, they might con-
sider looking into the results of the study. By examining the func-
tions of the libraries with the highest adoption percentages, they
might be able to dedicate some development efforts into creating
libraries that serve similar purposes to further increase their influ-
ence. A company like Square could take notice of other libraries
that contribute to the connectivity library space and consider im-
plementing similar libraries as their brand has a good reputation in
the space that could be further expanded upon.

7 RELATEDWORK
Existing related work has a large focus on the effects of 3rd party
libraries in a privacy and security based setting. Many of these
works focus on closed sourced apps. A detailed summary of research
on third-party libraries in Android Apps can be found in a recent
intensive literature review conducted by Zhan et al. [27].

When analyzing third-party libraries used in mobile apps, many
researchers mainly identify apps using third-party libraries by re-
verse engineering APKs of free Android apps and analyze the im-
pact of libraries on the reporting of downstream applications, such
as clone detection [18], malware detection [14], and repackaged
apps detection [14]. Li et al. [14] also reported that the top used
library is com.google.ads, which is used by 17% of their decompiled
1.5 million Android apps. Besides, many studies have proposed
tools [15, 16, 19, 22, 28] to identify libraries in Android apps (i.e.,
APKs), or to identify the appearance of malicious libraries [29],
and vulnerable library version [26]. Different from their work, we
focus on analyzing the adoption of third-party libraries and how
the popularity of libraries evolve. Our analysis requires a set of

snapshots of open-source apps, while they take as input a set of
APKs collected at one timestamp.

Another line of research focuses on analyzing the updates of
third-party libraries in mobile apps. For example, Ahasanuzzaman
et al. [6, 7] studied the adoption of third-party advertisement li-
braries in popular mobile apps. Derr et al. [8] performed an empiri-
cal study on third-party library updatability over 1,264,118 Android
apps. They found that most of the libraries can be upgraded with-
out modifying the source code. A following study by Huang et
al. [12] found that the prior reported updatability rate by Derr et
al. is under real conditions overestimated by a factor of 1.57–2.06.
Salza et al. [21] then enhances the state of the art in this direc-
tion. They empirically investigated when, how, and why mobile
developers update third-party libraries in their code by mining the
evolution history of 2,752 open-source apps and with a survey of 73
developers. They found that developers rarely update the version
of third-party libraries they used in their mobile apps. This aligns
with a prior study by Kula et al. [13]. They also found that most of
library updates are done with the aim of avoiding bug propagation
or making an app compatible with Android SDK releases. Differ-
ing from them, we analyze library adoption percentages. However,
we also argue that Android releases have a huge impact on the
adoption of third-party libraries and their over-time popularity (ref.
Section 4.2).

8 CONCLUSION AND FUTUREWORK
In this paper, we created a snapshot of the current open-source
Android library landscape through a large-scale app and library
collection. Through examining library adoption percentages over
six years, we were able to measure some of the effective practices
of library development and release cycles. We identified 32 most
popular libraries adopted in our studied apps over six years and used
five patterns to characterize their evolution pattern. Our findings
provide information for both developers and researchers for their
future adoption of libraries and analysis of library adoption in
mobile apps. In the future, we would like to expand the scope of
our study by considering closed apps and relaxing the thresholds
used to pick target popular libraries.

ACKNOWLEDGEMENT
We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), [funding reference
number: RGPIN-2019-05071].

Adoption of Third-party Libraries in Mobile Apps:
A Case Study on Open-source Android Applications MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Add build dependencies nbsp;: nbsp; android developers. https://developer.

android.com/studio/build/dependencies?buildsystem=ndk-build.
[2] The gradle wrapper. https://docs.gradle.org/current/userguide/gradle_wrapper.

html.
[3] Replicate package. https://figshare.com/s/5623c7b2b3d15f4800b0.
[4] F-droid - free and open source android app repository. https://f-droid.org/, 2010.
[5] Viewing and debugging dependencies. https://docs.gradle.org/current/userguide/

viewing_debugging_dependencies, 2022.
[6] M. Ahasanuzzaman, S. Hassan, C.-P. Bezemer, and A. E. Hassan. A longitudi-

nal study of popular ad libraries in the Google Play Store. Empirical Software
Engineering, 25(1):824–858, 2020.

[7] M. Ahasanuzzaman, S. Hassan, and A. E. Hassan. Studying ad library integra-
tion strategies of top free-to-download apps. IEEE Transactions on Software
Engineering, 48(2):209–224, 2022.

[8] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. Keep me updated: An empirical
study of third-party library updatability on android. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 2187–
2200, 2017.

[9] F.-X. Geiger, I. Malavolta, L. Pascarella, D. Di Nucci, and A. Bacchelli. Android-
timemachine. https://androidtimemachine.github.io/publications/.

[10] F.-X. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. D. Nucci, and A. Bacchelli. A
graph-based dataset of commit history of real-world android apps. In Proceedings
of the 15th International Conference on Mining Software Repositories, MSR, New
York, NY, May 2018. ACM. doi: https://doi.org/10.1145/3196398.3196460.

[11] J. A. Hartigan andM. A.Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1):100–108,
1979.

[12] J. Huang, N. Borges, S. Bugiel, and M. Backes. Up-to-crash: Evaluating third-party
library updatability on android. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 15–30. IEEE, 2019.

[13] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers update
their library dependencies? Empirical Software Engineering, 23(1):384–417, 2018.

[14] L. Li, T. Riom, T. F. Bissyandé, H. Wang, J. Klein, et al. Revisiting the impact
of common libraries for android-related investigations. Journal of Systems and
Software, 154:157–175, 2019.

[15] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. Libd:
Scalable and precise third-party library detection in android markets. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
335–346. IEEE, 2017.

[16] M. Li, P. Wang, W. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo, and W. Zou.
Large-scale third-party library detection in android markets. IEEE Transactions

on Software Engineering, 46(9):981–1003, 2018.
[17] J.-W. Lin, N. Salehnamadi, and S. Malek. Test automation in open-source android

apps. Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, 2020. doi: 10.1145/3324884.3416623.

[18] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and D. Poshyvanyk.
Revisiting android reuse studies in the context of code obfuscation and library
usages. In Proceedings of the 11th Working Conference on Mining Software Reposi-
tories, pages 242–251, 2014.

[19] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: fast and accurate detection of
third-party libraries in android apps. In Proceedings of the 38th international
conference on software engineering companion, pages 653–656, 2016.

[20] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,
1987. ISSN 0377-0427. doi: https://doi.org/10.1016/0377-0427(87)90125-7.

[21] P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F. Ferrucci. Third-party
libraries in mobile apps. Empirical Software Engineering, 25(3):2341–2377, 2020.

[22] W. Tang, P. Luo, J. Fu, and D. Zhang. Libdx: A cross-platform and accurate system
to detect third-party libraries in binary code. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
104–115. IEEE, 2020.

[23] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The impact of
automated parameter optimization on defect predictionmodels. IEEE Transactions
on Software Engineering, 45(7):683–711, 2018.

[24] M. Vogelzang. Monetize, advertise and analyze android apps. https://www.
appbrain.com/, 2010.

[25] J. Wharton. Jakewharton - overview. https://github.com/JakeWharton.
[26] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu. Atvhunter: Reliable

version detection of third-party libraries for vulnerability identification in an-
droid applications. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 1695–1707. IEEE, 2021.

[27] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu. Research on third-party
libraries in android apps: A taxonomy and systematic literature review. IEEE
Transactions on Software Engineering, (01):1–1, 2021.

[28] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and H. Chen. Detect-
ing third-party libraries in android applications with high precision and recall.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 141–152. IEEE, 2018.

[29] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li. An empirical study of
potentially malicious third-party libraries in android apps. In Proceedings of the
13th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pages 144–154, 2020.

https://developer.android.com/studio/build/dependencies?buildsystem=ndk-build
https://developer.android.com/studio/build/dependencies?buildsystem=ndk-build
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://figshare.com/s/5623c7b2b3d15f4800b0
https://f-droid.org/
https://docs.gradle.org/current/userguide/viewing_debugging_dependencies
https://docs.gradle.org/current/userguide/viewing_debugging_dependencies
https://androidtimemachine.github.io/publications/
https://www.appbrain.com/
https://www.appbrain.com/
https://github.com/JakeWharton

	Abstract
	1 Introduction
	2 Background
	3 Data Collection
	3.1 Collecting open-source Android apps
	3.2 Identifying apps with third-party libraries
	3.3 Collecting third-party library adoption history
	3.4 Data Statistics and Time Periods

	4 Empirical Study and Results
	4.1 RQ1: What are the highest adopted libraries?
	4.2 RQ2: How do the adoption percentages of popular libraries evolve?
	4.3 RQ3: What are the relationships between library version releases and the adoption percentages of libraries and their associated version patterns?

	5 Threats to Validity
	6 Implications
	7 Related Work
	8 Conclusion and Future Work
	References

